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Abstract:    We present a new algorithm for nesting problems. Many equally spaced points are set on a sheet, and a piece is moved 
to one of the points and rotated by an angle. Both the point and the rotation angle constitute the packing attitude of the piece. We 
propose a new algorithm named HAPE (Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the 
optimal packing attitude at which the piece has the lowest center of gravity. In addition, a new technique for polygon overlap 
testing is proposed which avoids the time-consuming calculation of no-fit-polygon (NFP). The detailed implementation of HAPE 
is presented and two computational experiments are described. The first experiment is based on a real industrial problem and the 
second on 11 published benchmark problems. Using a hill-climbing (HC) search method, the proposed algorithm performs well in 
comparison with other published solutions. 
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1  Introduction 
 

The nesting problem is a two-dimensional cut-
ting and packing problem dealing with irregular 
shaped pieces. It arises in many industries, e.g., 
shipbuilding, clothing, textiles, and furniture. The 
objective is usually to minimize the length of the 
sheet on which the pieces are placed satisfying the ‘no 
overlapping’ constraints. The problems we are going 
to deal with consider only one large rectangular sheet, 
having fixed width and infinite length, and the pieces 
are represented by polygons.  

Art (1966) presented the earliest algorithm for 
nesting problems. They introduced the concept of  
the ‘shape envelope’ to describe the feasible  
no-overlapping positions in which two pieces can be 
placed. Albano and Sapuppo (1980) used the same 
concept in nesting problems, but re-named it ‘no-fit- 
polygon’ (NFP), a term which then gradually became 
accepted in the literature. Subsequently, two research 

directions have been followed. The first aims to study 
nesting strategies and evaluation criteria. Oliveira et 
al. (2000) presented three nesting strategies (mini-
mizing area, minimizing length, and maximizing 
overlap) and three evaluation criteria (waste, overlap, 
and distance). Dowsland et al. (1998) proposed a 
jostling algorithm which can be regarded as a special 
nesting strategy. Dowsland et al. (2002) developed a 
bottom-left (BL) strategy to calculate the leftmost 
position for the piece by introducing the NFP. The 
second research direction concerns the search method 
of packing orderings. Gomes and Oliveira (2002) 
proposed a search technique based on a 2-exchange 
neighborhood generation mechanism. Burke et al. 
(2006) used hill climbing (HC) and tabu local search 
methods. Gomes and Oliveira (2006) used a simu-
lated annealing algorithm to guide the search over the 
solution space. 

Since the earliest work of Art (1966), the NFP 
has been regarded as a powerful geometric tool. It was 
embedded in nearly all the algorithms proposed for 
nesting problems. Many researchers have created 
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methods for computing NFPs. Bennell et al. (2001) 
proposed a method which avoids the need to de-
compose the pieces into suitable forms and the sub-
sequent assembly of the required NFPs. Burke et al. 
(2007) introduced an orbital method for the creation 
of NFPs.  

Although many methods have been proposed, 
the NFP calculation is still time-consuming. Take the 
benchmark problem SWIM, for example. Burke et al. 
(2007) declared that it will take 1/66 s to generate an 
NFP and that the total computing time is only 
1/66×(10×2)2=6.1 s (10 shapes and two rotation an-
gles per shape). While it may take only a short time in 
this condition, the execution time will increase to 
1/66×(10×32)2=1551.5 s if each piece is allowed to 
have 32 orientations.  

 
 

2  A new algorithm: HAPE 
 

In this paper, we propose a new algorithm for 
nesting problems which replaces time-consuming 
NFP calculations with a series of polygon overlap 
tests. Because our proposed algorithm combines the 
physical similarities of the optimization force leading 
to a minimum length and the principle of minimum 
total potential energy, it is named HAPE (Heuristic 
Algorithm based on the principle of minimum total 
Potential Energy). Before giving detailed implemen-
tation procedures, some concepts and definitions 
must be introduced. 

2.1  Principle of minimum total potential energy 

The principle of minimum total potential energy 
is a fundamental concept which asserts that a structure 
or body shall deform or displace to a position that 
minimizes the total potential energy. The total poten-
tial energy, Π, is the sum of the elastic strain energy, U, 
stored in the deformed body and the potential energy, 
V, of the applied forces: 

 
Π=U+V.                               (1) 

 
As the pieces are rigid in the packing problems, the 
elastic energy U is zero, and Eq. (1) should be re-
written as 
 

Π=V=Gy,                             (2) 

where G is the force due to gravity and y is the vertical 
coordinate of the center of gravity. 

The tendency of all weights to lower their posi-
tion is a basic law of nature. This also applies to 
nesting problems: the piece always attempts to find an 
optimal attitude to keep its center of gravity as low as 
possible. 

2.2  Definitions 

Definition 1 (Reference point)    The reference point 
is the point around which the piece is rotated. It can be 
any point in the 2D space. Usually it is suggested that 
one of the vertices of the polygon be chosen as the 
reference point (Fig. 1). 

 
 
 
 
 
 
 
 
 

Definition 2 (Rotation angle)    The rotation angle is 
the angle through which a piece is rotated around its 
reference point. It can be computed using the fol-
lowing formula: 

 

α=2πk/RN,                           (3) 
 
where k=0, 1, …, RN−1, and RN is the rotation 
number that the piece is allowed to have. 
Definition 3 (Attitude)    The attitude consists of the 
above two terms: reference point and rotation angle 
(Fig. 1). 
Definition 4 (Packing points and the distance be-
tween packing points)    Packing points are the evenly 
spaced points on the sheet. The vertical or horizontal 
distance between the packing points is referred to as 
the packing point distance (PPD) (Fig. 2). 
Definition 5 (Feasible attitude)    Let a piece slide to a 
packing point (x, y) and rotate around it through the 
angle α. If the piece does not intersect with the sheet 
border or other pieces, the corresponding attitude can 
be regarded as a feasible attitude. In Fig. 2, two atti-
tudes marked with solid lines are feasible, whereas 
those marked with dashed lines are infeasible. 

To estimate whether an attitude is feasible, an 
overlap test of polygons must be introduced. 

Fig. 1  Reference point and attitude 
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2.3  Polygon overlap test 

When pieces A and B are separated, their atti-
tudes are feasible (Fig. 3a). If piece B slides to the left 
(Fig. 3b), or rotates counter-clockwise (Fig. 3c), their 
attitudes become infeasible. Since the piece can be 
described as a polygon, the piece overlap test can be 
transformed into a polygon overlap test. 

 
 
 
 
 
 
 
 

 

2.3.1  Point-in-polygon test 

The point-in-polygon test which queries whether 
a point lies within a polygon is a fundamental prob-
lem in geometry (Sun and Yang, 1995). The sum-of- 
included-angles algorithm is a basic solution for the 
point-in-polygon test. Consider a point P0 and a 
polygon made up of n vertices Pi where i ranges from 
1 to n (Fig. 4). Compute the sum of the angles made 
between the test point P0 and each pair of points 
making up the polygon:  
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0 1
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i i
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PP P i n

PP P i n
   

  
           (4) 

1

sum
n

i
i
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If the sum is 2π then the point is an interior point; if 0 
then the point is an exterior point.  

 
 
 
 
 
 
 
 

 

 

2.3.2  Polygon separation test 

Logically, the inverse of a polygon overlap test is 
a polygon separation test which includes two subtests 
(suppose there are two polygons A and B): (1) All 
vertices of polygon A are exterior points of polygon B, 
and vice versa; (2) All line segments of polygon A do 
not cross those of B, and vice versa. 

Note the following two points: (1) When vertices 
of A are outside of B, A may contain B completely 
(Fig. 5a); (2) When the first subtest of the separation 
tests is satisfied, polygons A and B may still be over-
lapping (Fig. 5b). 

 
 
 
 
 
 
 
 
 

 

2.4  Advance-or-retreat method for polygon 
touching 

In Fig. 6a, A is fixed while B is sliding left to 
touch A (Fig. 6b). An advance-or-retreat method for 
polygon touching is described in Fig. 7. 

2.5  Geometric center of a polygon 

Suppose a polygon (Fig. 8) is composed of n 
vertices (i=1, 2, …, n) and n edges (li, i=1, 2, …, n). 
Its geometric center (xc, yc) can be calculated using  
Eq. (6): 

Fig. 2  Packing point and attitude 
A feasible attitude does not intersect with the sheet border or 
other pieces 
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Fig. 3  Feasible and infeasible attitudes 
When pieces A and B are separated (a), their attitudes are
feasible. If piece B slides to the left (b), or rotates counter-
clockwise (c), their attitudes become infeasible 
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Fig. 5  Overlapped polygons satisfying only one of the 
subtests 
(a) A contains B completely; (b) A and B overlap 
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  (6) 

 
where xn+1=x1, and yn+1=y1. A is the area of the poly-
gon, Mx is the first moment of the polygon in the x 
direction, My is the first moment of the polygon in the 
y direction, and these three values can be derived 
using the Green formula (Hibbeler, 2011). 

2.6  The implementation procedure of HAPE 

The implementation procedure of HAPE is 
similar to that of the TOPOS algorithm proposed by 
Oliveira et al. (2000), but needs no NFP calculation.  

An assumption and a term must be introduced 
first. 
Assumption 1   For the convenience of plotting ar-
rangements, we assume that the direction of the force 
of gravity is level to the left. Therefore, Eq. (2)  
becomes 
 

Π=Gx,                              (7) 
 

where x is the horizontal coordinate of the center of 
the piece. 
 
Attitude 

The attitude of the piece (Fig. 1) can be de-
scribed in C programming language: 

 

struct Attitude 
{ 
double x, y;  /*coordinate of the reference point*/ 
double alpha;  /*rotation angle*/ 
}; 
 

Now, HAPE can be described as follows: 
1. The pieces are sorted in order of decreasing 

area. 
2. The ‘current’ piece is moved to each packing 

point and rotated around it by RN angles.  
3. Calculate the x coordinate of the center of the 

current piece for each packing attitude according to 

Fig. 6  Contact between pieces A and B  
(a) Before contact; (b) After contact 
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Fig. 7  Flowchart of the advance-or-retreat method for 
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Eq. (6).  
4. Find the optimal attitude with the smallest x 

coordinate, and place the current piece on the sheet 
accordingly. 

5. HAPE stops when all the pieces have been 
placed. 
 

The formal process of HAPE can be stated as the 
following:  

 
Input: Point[0…PPN−1],  // Set PPN (packing point number) 

// packing points on the sheet (Fig. 2) 
Piece[0…quantity−1] 
// Pieces have been sorted in order of decreasing area 

Begin 
for (int i=0; i<quantity; i++)  
{ 
     PackOnePieceOnSheet(Piece[i]);  
} 
End 
 

The flowchart of packing one piece on the sheet 
is shown in Fig. 9. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The above flowchart has been simplified for ease 

of understanding. Some modifications can be added 
to accelerate the computing. For example, after one 
piece is placed, it will occupy some packing points 
which will be infeasible for the next piece. In Fig. 2, 
the points in the three placed triangular pieces have 
been eliminated. When the fourth piece is ready to be 
placed, it can skip these occupied points. 

2.7  Hybridizing HAPE with HC 

The pre-defined ordering of the pieces does not 
usually lead to a better layout. Thus, we hybridize 
HAPE with HC, which is used to search for an opti-
mal ordering (Burke et al., 2006). If an improved 
neighbor is found, it is adopted as the current solution 
and the search continues. If the neighbor is not an 
improvement over the current solution, it is discarded 
and the search continues to find another neighbor. The 
best solution is returned at the end of the search. We 
apply operator iOpt (i=1, 2, …, N, where N is the 
piece quantity) throughout the searching process. 
1Opt randomly chooses two pieces and swaps their 
position in the order; i.e., 1Opt means one swapping 
operation is applied to the order (Fig. 10). This is 
extended to NOpt, where N swapping operations are 
carried out and which is likely to produce a radically 
different solution, and thus diversify the search. Each 
operator has a different chance of selection—from 
1Opt which has the largest chance of being selected, 
to NOpt, which has a much lower chance of being 
selected. This is because the fewer radical operators 
allow us to concentrate our search, and the highly 
radical operators, e.g., NOpt, enable us to escape from 
local optima.  

 
 
 
 
 
 
 
 
 
 
 
 
The pseudo codes for HAPE+HC are listed as 

follows: 
 

Input: Pieces, RN, PPD, sheet size, MaxIterationNum 
Begin 
Current.Ordering=SortOrdering(DecreasingArea); 
Current.PackingLength=HAPE(Current.Ordering); 
IterationNum=0; 
while (IterationNum<MaxIterationNum) 
{ 

// randomly generate an integer from 1 to N 
Opt=SelectOperator();  

Fig. 9  Flowchart showing the packing of one piece on the 
sheet 

Start
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2) piece[i].Rotate(alpha)
3) Compute the x coordinate of 
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   x=CalculateCenter_X(piece[i])
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x<x_min AND
att is feasible
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(a)  
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Fig. 10  1Opt: one swapping operation of two randomly 
chosen pieces from the packing ordering 
(a) Before swapping; (b) After swapping 
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Neighbor.Ordering=GenerateNeighbor(Current.Ordering, 
Opt); 

Neighbor.PackingLength=HAPE(Neighbor.Ordering); 
if (Neighbor.PackingLength<Current.PackingLength) 

Current=Neighbor; 
IterationNum=IterationNum+1; 

} 
return Current; 
End 

 
 
3  Computational experiments 
 

To evaluate the performance of HAPE, we car-
ried out two experiments which were run in the Visual 
C++ 6.0 environment using a computer with a 2.66 
GHz Celeron® CPU and the Windows XP operating 
system. 

3.1  Experiment 1 

The first test was taken from the shipbuilding 
industry and included 66 pieces with four different 
types of shapes (Fig. 11, the detailed data can be 
found in Appendix A). The sheet was 3050 mm wide, 
on which we set a lot of packing points (PPD=100 
mm). At each point, the piece was allowed to have 
eight orientations (RN=8), corresponding to rotation 
angles of 0°, 45°, 90°, …, 315°. All pieces were 
placed one by one in order of decreasing area using 
the HAPE algorithm (Fig. 12).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
HAPE achieved a compact layout confirming 

that HAPE is capable of hole-filling and packing 
concave shaped and jigsaw-type pieces (Fig. 12). 
Nevertheless, there were still a lot of gaps between 

pieces. We can eliminate them using the advance-or- 
retreat method. After the vertical and horizontal slid-
ing of each piece (Fig. 13), the layout will become 
more compact (Fig. 14). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To achieve a more optimal layout, we used HC 

as a search mechanism to generate new input order-
ings for piece placement and HAPE to transform the 
ordering into a layout. This problem was run for 500 
iterations; i.e., there were 500 HAPEs executed dur-
ing the whole searching procedure. The packing 
density improved greatly, to 72.45% (Fig. B3). 

 
(a)

 
(b) (c)

1

2 2

1 1

2

Fig. 13  Eliminating gaps by vertical/horizontal sliding 
of each piece 
(a) Gaps between pieces 1, 2 and the bottom of the sheet; (b) 
Gap between piece 1 and the bottom is eliminated by ver-
tical sliding of piece 1; (c) Gap between pieces 1 and 2 is 
eliminated by horizontal sliding of piece 2 

 

Fig. 14  Layout which becomes more compact after 
eliminating gaps 
Computation time: 0.42 s; packing length: 4521.08 mm; 
packing density: 66.77% 

Fig. 11  Sheet and pieces 
The sheet is 3050 mm wide, on which a lot of packing points 
are set with the packing point distance (PPD) being 100 mm. 
At each point, the piece is allowed to have eight orientations, 
corresponding to rotation angles of 0°, 45°, 90°, …, 315° 

No. 1 
quantity: 1 

No. 2
quantity: 10

No.4 
quantity: 40

No. 3
quantity: 15

Direction of gravity 
Sheet 

Fig. 12  Gap between pieces 
Packing length: 4900 mm; packing density: 61.61% 
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Obviously, RN and PPD are two important 
variables that affect the computing speed and packing 
efficiency. Thus, we made some comparisons under 
different RNs and PPDs. In Table 1, the computa-
tional results are summarized. Due to space limita-
tions, we list the detailed layout results of only 
PPD=25 mm (Figs. B1–B5). 

Larger RNs and smaller PPDs lead to extended 
execution times (Table 1 and Figs. 15b and 15d). The 
lines in Fig. 15b are close to straight, which indicates 
a linear relationship between the execution time and 
RN. In Fig. 15d five parabolic lines describe the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

quadratic relationship between the execution time and 
PPD. 

As to the relationship between packing density 
(PD) and RN/PPD, the situation is complicated. The 
first conclusion, drawn from Fig. 15c, is that a smaller 
PPD leads to a larger PD, except for RN=4. But a 
larger RN does not always produce a more compact 
layout. PD does not always increase with increasing 
RN (Fig. 15a). Three PD-RN lines reach a peak at 
RN=4 and RN=16. The PD can reach a relatively high 
value at a certain RN, which we call the sweet RN. 
This problem has two sweet RNs. 
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Fig. 15  Packing density and execution time with different rotation numbers of piece (RNs) and packing point dis-
tances (PPDs) 
(a) Packing density vs. RN; (b) Execution time vs. RN; (c) Packing density vs. PPD; (d) Execution time vs. PPD 

Table 1  Packing density and execution time with different RNs and PPDs 

Packing length (mm) Packing density (%) Execution time (s) 
RN 

PPD=100 mm 50 mm 25 mm 100 mm 50 mm 25 mm 100 mm 50 mm 25 mm

2 4681.39 4391.34 4218.28 64.48 68.74 71.56 114 272 799 

4 4397.47 4159.01 4167.96 68.65 72.58 72.43 167 422 1327 

8 4391.95 4274.98 4166.79 68.73 70.61 72.45 240 741 2607 

16 4361.64 4193.77 4068.06 69.21 71.98 74.20 458 1427 5136 

32 4400.55 4221.47 4144.43 68.60 71.51 72.84 866 2724 10 278 

RN: rotation number of piece; PPD: packing point distance  
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3.2  Experiment 2 

To assess the performance of HAPE, we gath-
ered 11 well-known problems from the literature, 
which were downloaded from the EURO Special 
Interest Group on Cutting and Packing (ESICUP) 
website http://paginas.fe.up.pt/~esicup/tiki-index.php 
(Table 2).  

Once this website was open to the public, re-
searchers around the world competed to test their 
algorithms with these standard problems. The re-
ported packing lengths are becoming shorter and 
shorter (Table 3). Taking Blaz1 for example, there are 
four different length records from the years 2000 to 
2006. The longest record (Lmax=28.9) was created by 
Oliveira et al. (2000) while the shortest (Lmin=25.84) 
was from Gomes and Oliveira (2006).  

As in Experiment 1, each problem in Table 2 was 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

run for 500 iterations (HC+HAPE). The packing 
lengths and execution times are summarized in Table 
3 (for details see Appendix B, Figs. B6–B16).  

The first observation about HAPE is its high 
speed which allows a fairly wide search of the solu-
tion space. Referring to the last column in Table 3, the 
shortest execution time for HAPE was 18/500=0.04 s 
and the longest was 1078/500=2.16 s. 

The second observation is the good performance 
of HAPE in combination with HC. Although the pro-
posed approach does not surpass any of the newly 
created records, the solutions are located within the 
reasonable range (except for SHAPES0/SHAPES1). 
Take problem Blaz1 for example, Lhh=28.34[Lmin= 
25.84, Lmax=28.90]. This can be seen more clearly by 
defining the relative length, Li/Lhh (Li=Lmin, Lmax, or 
Lhh) (Fig. 16). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  The 11 benchmark problems from the literature 

Reference Problem name Piece quantity Sheet width Rotation number 

Błażewicz et al. (1993) Blaz1 28 15 2 

Ratanapan and Dagli (1997) Dagli 30 60 4 

Fujita et al. (1993) Fu 12 38 4 

Jakobs (1996) Jakobs1 25 40 4 

Jakobs (1996) Jakobs2 25 70 4 

Marques et al. (1991) Marques 24 104 4 

Oliveira et al. (2000) SHAPES0 43 40 1 

Oliveira et al. (2000) SHAPES1 43 40 2 

Oliveira et al. (2000) SHIRTS 99 40 2 

Oliveira et al. (2000) SWIM 48 5752 2 

Oliveira et al. (2000) TROUSERS 64 79 2 

 
Table 3  Published length records and our results 

Problem 
Length 

1 
Reference

Length 
2 

Reference
Length

3 
Reference

Length
4 

Reference Lmin Lmax Lhh
 Execution 

time (s)

Blaz1 27.30 a 27.20 e 25.84 f 28.90 g 25.84 28.90 28.34 18 

Dagli 65.60 b 60.57 e 58.20 f − − 58.20 65.60 60.75 219 

Fu 34.00 c 32.80 e 31.33 f − − 31.33 34.00 33.00 38 

Jakobs1 13.20 b 11.86 e 12.00 f − − 11.86 13.20 13.00 59 

Jakobs2 28.20 b 25.80 e 24.97 f − − 24.97 28.20 26.77 183 

Marques 83.60 b 80.00 e 78.48 f − − 78.48 83.60 82.30 369 

SHAPES0 63.00 d 65.00 e 60.00 f 66.75 g 60.00 66.75 67.55 79 

SHAPES1 59.00 a 58.40 e 56.00 f 61.00 g 56.00 61.00 64.04 159 

SHIRTS 63.13 a 63.00 e 62.21 f 66.44 g 62.21 66.44 65.97 217 

SWIM 6568.00 b 6462.40 e 5948.37 f − − 5948.37 6568.00 6525.24 805 

TROUSERS 245.75 a 243.40 e 242.11 f 263.20 g 242.11 263.17 251.47 1078 

Lhh: packing length generated by HAPE+HC. a: Gomes and Oliveira (2002); b: Hopper (2000); c: Fujita et al. (1993); d: Dowsland and 
Dowsland (1993); e: Burke et al. (2006); f: Gomes and Oliveira (2006); g: Oliveira et al. (2000) 
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Table 3 and Fig. 16 show that our method works 

poorly on SHAPES0/SHAPES1. To improve the 
packing density, we assigned three larger values to 
RN, from 4 to 16, and then produced the corre-
sponding layouts (Figs. 17–19). In Fig. 18, the pack-
ing length reaches the optimal value 56.66 (very close 
to Lmin=56.00 in Table 3) at RN=8, which can be re-
garded as the sweet RN for problem SHAPES. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
4  Summary 
 

In this paper we have presented a new algorithm, 
named HAPE, for nesting problems. This algorithm is 
quite different from others, because it avoids the 
time-consuming calculation of NFP by using a geo-
metric technique of an overlap test for polygons. Our 
computational experiments showed that HAPE is a 
credible algorithm for nesting problems. HAPE also 
allows each piece to have up to 32 orientations while 
the execution time is reasonable. The initial study also 
demonstrated HAPE’s potential for hybridization 
with other meta-heuristics. 

Although the main advantage of HAPE is its 
ability to rotate the pieces through many angles, it is 
not suitable to assign a big value to RN without 
limitation. We suggest using a sweet RN and a rea-
sonably small PPD to obtain a compact packing lay-
out in an acceptable time. But how to find the sweet 
RN is still not clear. This could be an interesting re-
search question for future studies. 
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Appendix A:  Data set of problem SomeParts 
from shipbuilding industry 
 
Plate length=5000 
Plate width=3050 
Part 
Name 
Part1 
Quantity 
1 
OutLoop 
93.589,1651.729  93.589,1050.924 
209.909,962.031  354.716,877.905 
477.743,798.551  598.471,726.769 
732.067,972.383  749.897,991.143 
774.718,998.476  799.880,992.415 
844.681,968.046  853.856,961.629 
861.373,953.331  866.855,943.568 
870.027,932.830  870.730,921.656 
868.929,910.605  864.714,900.232 
842.916,596.559  979.581,532.350 
1118.216,472.471  1235.201,425.637 
1326.210,669.060  1341.240,690.130 
1364.791,700.864  1390.554,698.383 
1436.451,681.223  1446.433,676.153 
1455.037,668.988  1461.831,660.088 
1466.474,649.900  1468.734,638.934 
1468.497,627.740  1465.775,616.880 
1374.585,372.976  1518.983,321.731 
1714.168,259.200  1912.952,202.611 
1977.557,454.205  1990.263,476.753 
2012.541,489.928  2038.422,490.198 
2085.882,478.011  2096.346,474.030 
2105.663,467.819  2113.364,459.692 
2119.063,450.054  2122.475,439.390 
2123.428,428.234  2121.875,417.146 
2057.134,165.022  2238.542,121.724 
2445.524,78.184  2653.588,40.141 
2707.589,31.157  2707.589,616.729 
2567.589,616.729  2549.911,624.052 
2542.589,641.729  2542.589,669.729 
2549.911,687.407  2567.589,694.729 
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2707.589,694.729  2707.589,1365.729 
2567.589,1365.729  2549.911,1373.052 
2542.589,1390.729  2542.589,1418.729 
2549.911,1436.407  2567.589,1443.729 
2707.589,1443.729  2707.589,2139.729 
1889.589,2139.729  1889.589,1879.729 
1882.890,1854.729  1864.589,1836.428 
1839.589,1829.729  1790.589,1829.729 
1765.589,1836.428  1747.287,1854.729 
1740.589,1879.729  1740.589,2139.729 
1021.589,2139.729  1021.589,1859.729 
1014.890,1834.729  996.589,1816.428 
971.589,1809.729  920.589,1809.729 
895.589,1816.428  877.287,1834.729 
870.589,1859.729  870.589,2139.729 
93.589,2139.729  EndOutLoop 
InnerLoop 
1709.245,837.960  1909.245,891.550 
2055.655,1037.960  2109.245,1237.960 
2055.655,1437.960  1909.245,1584.371 
1709.245,1637.960  1309.245,1637.960 
1109.245,1584.371  962.835,1437.960 
909.245,1237.960  962.835,1037.960 
1109.245,891.550  1309.245,837.960 
EndInnerLoop 
EndPart 
Part 
Name 
Part2 
Quantity 
10 
OutLoop 
215.943,595.621  286.602,30.347 
356.602,30.347  492.443,321.659 
540.235,403.064  602.476,474.036 
676.947,532.044  760.993,575.022 
851.619,601.437  945.595,610.347 
955.595,610.347  955.595,630.347 
246.602,630.347  245.590,621.991 
242.612,614.119  237.840,607.184 
231.552,601.590  224.109,597.658 
EndOutLoop 
EndPart 
Part 
Name 
Part3 
Quantity 
15 
OutLoop 
58.095,402.023  56.902,392.965 
53.406,384.523  47.843,377.274 
40.595,371.712  32.153,368.216 
23.095,367.023  23.095,37.023 
47.843,26.772  58.095,2.023 
298.095,2.023  304.390,68.642 
328.131,131.204  367.617,185.228 

420.018,226.843  481.581,253.068 
547.895,262.023  633.095,262.023 
633.095,367.023  608.346,377.274 
598.095,402.023 
EndOutLoop 
InnerLoop 
286.799,275.478  261.419,281.271 
241.066,265.040  241.066,239.007 
261.419,222.775  286.799,228.568 
298.095,252.023  EndInnerLoop 
EndPart 
Part 
Name 
Part4 
Quantity 
40 
OutLoop 
135.869,21.829  155.869,21.829 
170.844,105.429  205.515,182.960 
257.840,249.858  324.738,302.183 
402.269,336.853  485.869,351.829 
485.869,371.829  170.869,371.829 
160.617,347.080  135.869,336.829 
EndOutLoop 
EndPart 
#FileEnd 

 
 
Appendix B:  Layouts with different RNs and 
PPDs 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. B1  SomeParts (RN=2, PPD=25) 
HC (500 iterations)+HAPE. Length=4218.28; density=71.56%;
execution time=799 s 

Fig. B2  SomeParts (RN=4, PPD=25) 
HC (500 iterations)+HAPE. Length=4167.96; density=72.43%;
execution time=1327 s 
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 Fig. B3  SomeParts (RN=8, PPD=25) 
HC (500 iterations)+HAPE. Length=4166.79; density=72.45%;
execution time=2607 s 

Fig. B4  SomeParts (RN=16, PPD=25) 
HC (500 iterations)+HAPE. Length=4068.06; density=74.20%;
execution time=5136 s 

Fig. B5  SomeParts (RN=32, PPD=25) 
HC (500 iterations)+HAPE. Length=4144.43; density=72.84%;
execution time=10 278 s 

Fig. B6  Blaz1 
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length= 28.34;
density=76.21%; execution time=18 s 
 

 

Fig. B7  Dagli 
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=60.75;
density=83.48%; execution time=219 s 

 

 

Fig. B8  Fu 
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=33.00;
density=86.36%; execution time=38 s 

 

Fig. B10  Jakobs2 
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=26.77;
density=72.11%; execution time=183 s 

 

 

Fig. B11  Marques 
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=
82.30; density=84.05%; execution time=369 s 

 
Fig. B12  SHAPES0 

HC (500 iterations)+HAPE (RN=1, PPD=0.5). Length=67.55;
density=59.06%; execution time=79 s 

Fig. B9  Jakobs1 
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=13.00;
density=75.38%; execution time=59 s 
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Fig. B13  SHAPES1 
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length=64.04;
density=62.31%; execution time=159 s 

 

Fig. B14  SHIRTS 
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length=65.97;
density=81.86%; execution time=217 s 

 

 

Fig. B15  SWIM 
HC (500 iterations)+HAPE (RN=2, PPD=50). Length= 
6525.24; density=67.79%; execution time=805 s 

 

Fig. B16  TROUSERS 
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length=251.47;
density=86.61%; execution time=1078 s 

 


