
Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 860

Heuristic algorithm based on the principle of minimum total

potential energy (HAPE): a new algorithm for nesting problems

Xiao LIU, Jia-wei YE

(School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510640, China)

E-mail: liuxiao@scut.edu.cn; yjw4360@163.com

Received Feb. 18, 2011; Revision accepted Aug. 29, 2011; Crosschecked Sept. 28, 2011

Abstract: We present a new algorithm for nesting problems. Many equally spaced points are set on a sheet, and a piece is moved
to one of the points and rotated by an angle. Both the point and the rotation angle constitute the packing attitude of the piece. We
propose a new algorithm named HAPE (Heuristic Algorithm based on the principle of minimum total Potential Energy) to find the
optimal packing attitude at which the piece has the lowest center of gravity. In addition, a new technique for polygon overlap
testing is proposed which avoids the time-consuming calculation of no-fit-polygon (NFP). The detailed implementation of HAPE
is presented and two computational experiments are described. The first experiment is based on a real industrial problem and the
second on 11 published benchmark problems. Using a hill-climbing (HC) search method, the proposed algorithm performs well in
comparison with other published solutions.

Key words: Packing, Cutting, Nesting, Irregular, Heuristic algorithm, Minimum total potential energy
doi:10.1631/jzus.A1100038 Document code: A CLC number: TH16

1 Introduction

The nesting problem is a two-dimensional cut-
ting and packing problem dealing with irregular
shaped pieces. It arises in many industries, e.g.,
shipbuilding, clothing, textiles, and furniture. The
objective is usually to minimize the length of the
sheet on which the pieces are placed satisfying the ‘no
overlapping’ constraints. The problems we are going
to deal with consider only one large rectangular sheet,
having fixed width and infinite length, and the pieces
are represented by polygons.

Art (1966) presented the earliest algorithm for
nesting problems. They introduced the concept of
the ‘shape envelope’ to describe the feasible
no-overlapping positions in which two pieces can be
placed. Albano and Sapuppo (1980) used the same
concept in nesting problems, but re-named it ‘no-fit-
polygon’ (NFP), a term which then gradually became
accepted in the literature. Subsequently, two research

directions have been followed. The first aims to study
nesting strategies and evaluation criteria. Oliveira et
al. (2000) presented three nesting strategies (mini-
mizing area, minimizing length, and maximizing
overlap) and three evaluation criteria (waste, overlap,
and distance). Dowsland et al. (1998) proposed a
jostling algorithm which can be regarded as a special
nesting strategy. Dowsland et al. (2002) developed a
bottom-left (BL) strategy to calculate the leftmost
position for the piece by introducing the NFP. The
second research direction concerns the search method
of packing orderings. Gomes and Oliveira (2002)
proposed a search technique based on a 2-exchange
neighborhood generation mechanism. Burke et al.
(2006) used hill climbing (HC) and tabu local search
methods. Gomes and Oliveira (2006) used a simu-
lated annealing algorithm to guide the search over the
solution space.

Since the earliest work of Art (1966), the NFP
has been regarded as a powerful geometric tool. It was
embedded in nearly all the algorithms proposed for
nesting problems. Many researchers have created

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

ISSN 1673-565X (Print); ISSN 1862-1775 (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 861

methods for computing NFPs. Bennell et al. (2001)
proposed a method which avoids the need to de-
compose the pieces into suitable forms and the sub-
sequent assembly of the required NFPs. Burke et al.
(2007) introduced an orbital method for the creation
of NFPs.

Although many methods have been proposed,
the NFP calculation is still time-consuming. Take the
benchmark problem SWIM, for example. Burke et al.
(2007) declared that it will take 1/66 s to generate an
NFP and that the total computing time is only
1/66×(10×2)2=6.1 s (10 shapes and two rotation an-
gles per shape). While it may take only a short time in
this condition, the execution time will increase to
1/66×(10×32)2=1551.5 s if each piece is allowed to
have 32 orientations.

2 A new algorithm: HAPE

In this paper, we propose a new algorithm for
nesting problems which replaces time-consuming
NFP calculations with a series of polygon overlap
tests. Because our proposed algorithm combines the
physical similarities of the optimization force leading
to a minimum length and the principle of minimum
total potential energy, it is named HAPE (Heuristic
Algorithm based on the principle of minimum total
Potential Energy). Before giving detailed implemen-
tation procedures, some concepts and definitions
must be introduced.

2.1 Principle of minimum total potential energy

The principle of minimum total potential energy
is a fundamental concept which asserts that a structure
or body shall deform or displace to a position that
minimizes the total potential energy. The total poten-
tial energy, Π, is the sum of the elastic strain energy, U,
stored in the deformed body and the potential energy,
V, of the applied forces:

Π=U+V. (1)

As the pieces are rigid in the packing problems, the
elastic energy U is zero, and Eq. (1) should be re-
written as

Π=V=Gy, (2)

where G is the force due to gravity and y is the vertical
coordinate of the center of gravity.

The tendency of all weights to lower their posi-
tion is a basic law of nature. This also applies to
nesting problems: the piece always attempts to find an
optimal attitude to keep its center of gravity as low as
possible.

2.2 Definitions

Definition 1 (Reference point) The reference point
is the point around which the piece is rotated. It can be
any point in the 2D space. Usually it is suggested that
one of the vertices of the polygon be chosen as the
reference point (Fig. 1).

Definition 2 (Rotation angle) The rotation angle is
the angle through which a piece is rotated around its
reference point. It can be computed using the fol-
lowing formula:

α=2πk/RN, (3)

where k=0, 1, …, RN−1, and RN is the rotation
number that the piece is allowed to have.
Definition 3 (Attitude) The attitude consists of the
above two terms: reference point and rotation angle
(Fig. 1).
Definition 4 (Packing points and the distance be-
tween packing points) Packing points are the evenly
spaced points on the sheet. The vertical or horizontal
distance between the packing points is referred to as
the packing point distance (PPD) (Fig. 2).
Definition 5 (Feasible attitude) Let a piece slide to a
packing point (x, y) and rotate around it through the
angle α. If the piece does not intersect with the sheet
border or other pieces, the corresponding attitude can
be regarded as a feasible attitude. In Fig. 2, two atti-
tudes marked with solid lines are feasible, whereas
those marked with dashed lines are infeasible.

To estimate whether an attitude is feasible, an
overlap test of polygons must be introduced.

Fig. 1 Reference point and attitude

x

y

ref_pt (x, y)
α

o

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 862

2.3 Polygon overlap test

When pieces A and B are separated, their atti-
tudes are feasible (Fig. 3a). If piece B slides to the left
(Fig. 3b), or rotates counter-clockwise (Fig. 3c), their
attitudes become infeasible. Since the piece can be
described as a polygon, the piece overlap test can be
transformed into a polygon overlap test.

2.3.1 Point-in-polygon test

The point-in-polygon test which queries whether
a point lies within a polygon is a fundamental prob-
lem in geometry (Sun and Yang, 1995). The sum-of-
included-angles algorithm is a basic solution for the
point-in-polygon test. Consider a point P0 and a
polygon made up of n vertices Pi where i ranges from
1 to n (Fig. 4). Compute the sum of the angles made
between the test point P0 and each pair of points
making up the polygon:

0 1

0 1

, 1,2,..., 1,

, ,
i i

i
i

PP P i n

PP P i n
   

  
 (4)

1

sum
n

i
i

 . (5)

If the sum is 2π then the point is an interior point; if 0
then the point is an exterior point.

2.3.2 Polygon separation test

Logically, the inverse of a polygon overlap test is
a polygon separation test which includes two subtests
(suppose there are two polygons A and B): (1) All
vertices of polygon A are exterior points of polygon B,
and vice versa; (2) All line segments of polygon A do
not cross those of B, and vice versa.

Note the following two points: (1) When vertices
of A are outside of B, A may contain B completely
(Fig. 5a); (2) When the first subtest of the separation
tests is satisfied, polygons A and B may still be over-
lapping (Fig. 5b).

2.4 Advance-or-retreat method for polygon
touching

In Fig. 6a, A is fixed while B is sliding left to
touch A (Fig. 6b). An advance-or-retreat method for
polygon touching is described in Fig. 7.

2.5 Geometric center of a polygon

Suppose a polygon (Fig. 8) is composed of n
vertices (i=1, 2, …, n) and n edges (li, i=1, 2, …, n).
Its geometric center (xc, yc) can be calculated using
Eq. (6):

Fig. 2 Packing point and attitude
A feasible attitude does not intersect with the sheet border or
other pieces

PPD,

P
P

D

Stock
sheet

packing point
distance

Feasible attitude

Infeasible
attitude

Packing
point

A
B

A B A

(a) (b) (c)

B

Fig. 3 Feasible and infeasible attitudes
When pieces A and B are separated (a), their attitudes are
feasible. If piece B slides to the left (b), or rotates counter-
clockwise (c), their attitudes become infeasible

(a)

P1
P2

P3

P4
P5

P0

P1
P2

P4
P5

P0

(b)

P3

α1

α2

α3α4

α5

α1 α2

α3

α4

α5

Fig. 4 Summation of angles

(a) 0,ii
  exterior point; (b) 2π,ii

  interior point

B

A

A

B

(a) (b)

Fig. 5 Overlapped polygons satisfying only one of the
subtests
(a) A contains B completely; (b) A and B overlap

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 863

2 2
1 1 1

1
c

1 1
1

2 2
1 1 1

1
c

1 1
1

()()
1

,
3

()()

()()
1

,
3

()()

n

i i i i i i
y i

n

i i i i
i

n

i i i i i i
x i

n

i i i i
i

y y x x x x
M

x
A

x x y y

x x y y y y
M

y
A

x x y y

  


 


  


 



  

  
  

   

 
  










 (6)

where xn+1=x1, and yn+1=y1. A is the area of the poly-
gon, Mx is the first moment of the polygon in the x
direction, My is the first moment of the polygon in the
y direction, and these three values can be derived
using the Green formula (Hibbeler, 2011).

2.6 The implementation procedure of HAPE

The implementation procedure of HAPE is
similar to that of the TOPOS algorithm proposed by
Oliveira et al. (2000), but needs no NFP calculation.

An assumption and a term must be introduced
first.
Assumption 1 For the convenience of plotting ar-
rangements, we assume that the direction of the force
of gravity is level to the left. Therefore, Eq. (2)
becomes

Π=Gx, (7)

where x is the horizontal coordinate of the center of
the piece.

Attitude

The attitude of the piece (Fig. 1) can be de-
scribed in C programming language:

struct Attitude
{
double x, y; /*coordinate of the reference point*/
double alpha; /*rotation angle*/
};

Now, HAPE can be described as follows:
1. The pieces are sorted in order of decreasing

area.
2. The ‘current’ piece is moved to each packing

point and rotated around it by RN angles.
3. Calculate the x coordinate of the center of the

current piece for each packing attitude according to

Fig. 6 Contact between pieces A and B
(a) Before contact; (b) After contact

A B

x

y

Slide to the left

(a)

A B

x

y

(b)

o

o

B slides to the left by
the step s

Step s=1 mm
error=0.0001 mm

A and B
overlap?

B slides to the right by
the step s

s<errors=s/2

End

Yes

Yes

No

No

Fig. 7 Flowchart of the advance-or-retreat method for
polygon touching

x

y

1

2
...

i

...

n -1

n

3

l1

l2

ln ln-1

li-1
i-1 i+1

li

o

Fig. 8 A polygon which is composed of n vertices and n
edges

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 864

Eq. (6).
4. Find the optimal attitude with the smallest x

coordinate, and place the current piece on the sheet
accordingly.

5. HAPE stops when all the pieces have been
placed.

The formal process of HAPE can be stated as the
following:

Input: Point[0…PPN−1], // Set PPN (packing point number)

// packing points on the sheet (Fig. 2)
Piece[0…quantity−1]
// Pieces have been sorted in order of decreasing area

Begin
for (int i=0; i<quantity; i++)
{
 PackOnePieceOnSheet(Piece[i]);
}
End

The flowchart of packing one piece on the sheet
is shown in Fig. 9.

The above flowchart has been simplified for ease

of understanding. Some modifications can be added
to accelerate the computing. For example, after one
piece is placed, it will occupy some packing points
which will be infeasible for the next piece. In Fig. 2,
the points in the three placed triangular pieces have
been eliminated. When the fourth piece is ready to be
placed, it can skip these occupied points.

2.7 Hybridizing HAPE with HC

The pre-defined ordering of the pieces does not
usually lead to a better layout. Thus, we hybridize
HAPE with HC, which is used to search for an opti-
mal ordering (Burke et al., 2006). If an improved
neighbor is found, it is adopted as the current solution
and the search continues. If the neighbor is not an
improvement over the current solution, it is discarded
and the search continues to find another neighbor. The
best solution is returned at the end of the search. We
apply operator iOpt (i=1, 2, …, N, where N is the
piece quantity) throughout the searching process.
1Opt randomly chooses two pieces and swaps their
position in the order; i.e., 1Opt means one swapping
operation is applied to the order (Fig. 10). This is
extended to NOpt, where N swapping operations are
carried out and which is likely to produce a radically
different solution, and thus diversify the search. Each
operator has a different chance of selection—from
1Opt which has the largest chance of being selected,
to NOpt, which has a much lower chance of being
selected. This is because the fewer radical operators
allow us to concentrate our search, and the highly
radical operators, e.g., NOpt, enable us to escape from
local optima.

The pseudo codes for HAPE+HC are listed as

follows:

Input: Pieces, RN, PPD, sheet size, MaxIterationNum
Begin
Current.Ordering=SortOrdering(DecreasingArea);
Current.PackingLength=HAPE(Current.Ordering);
IterationNum=0;
while (IterationNum<MaxIterationNum)
{

// randomly generate an integer from 1 to N
Opt=SelectOperator();

Fig. 9 Flowchart showing the packing of one piece on the
sheet

Start
1) x_min=1e20
2) RN=8
3) j=0

1) alpha=2*PI *k/RN
2) piece[i].Rotate(alpha)
3) Compute the x coordinate of

the geometric center
 x=CalculateCenter_X(piece[i])

k<RN

x<x_min AND
att is feasible

1) x_min=x
2) att.x=x[j]
 att.y=y[j]
 att.alpha=alpha

Yes

k=k+1

j=j+1

Yes

1) piece[i].MoveTo(att.x,att.y)

2) piece[i].Rotate(att.alpha)
End

No

No

j<PPN

Yes

No

1) piece[i].MoveTo(x[j],y[j])

2) k=0
1 2 3 4 5 6

(a)

1 3 4 52 6

 (b)

Fig. 10 1Opt: one swapping operation of two randomly
chosen pieces from the packing ordering
(a) Before swapping; (b) After swapping

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 865

Neighbor.Ordering=GenerateNeighbor(Current.Ordering,
Opt);

Neighbor.PackingLength=HAPE(Neighbor.Ordering);
if (Neighbor.PackingLength<Current.PackingLength)

Current=Neighbor;
IterationNum=IterationNum+1;

}
return Current;
End

3 Computational experiments

To evaluate the performance of HAPE, we car-
ried out two experiments which were run in the Visual
C++ 6.0 environment using a computer with a 2.66
GHz Celeron® CPU and the Windows XP operating
system.

3.1 Experiment 1

The first test was taken from the shipbuilding
industry and included 66 pieces with four different
types of shapes (Fig. 11, the detailed data can be
found in Appendix A). The sheet was 3050 mm wide,
on which we set a lot of packing points (PPD=100
mm). At each point, the piece was allowed to have
eight orientations (RN=8), corresponding to rotation
angles of 0°, 45°, 90°, …, 315°. All pieces were
placed one by one in order of decreasing area using
the HAPE algorithm (Fig. 12).

HAPE achieved a compact layout confirming

that HAPE is capable of hole-filling and packing
concave shaped and jigsaw-type pieces (Fig. 12).
Nevertheless, there were still a lot of gaps between

pieces. We can eliminate them using the advance-or-
retreat method. After the vertical and horizontal slid-
ing of each piece (Fig. 13), the layout will become
more compact (Fig. 14).

To achieve a more optimal layout, we used HC

as a search mechanism to generate new input order-
ings for piece placement and HAPE to transform the
ordering into a layout. This problem was run for 500
iterations; i.e., there were 500 HAPEs executed dur-
ing the whole searching procedure. The packing
density improved greatly, to 72.45% (Fig. B3).

(a)

(b) (c)

1

2 2

1 1

2

Fig. 13 Eliminating gaps by vertical/horizontal sliding
of each piece
(a) Gaps between pieces 1, 2 and the bottom of the sheet; (b)
Gap between piece 1 and the bottom is eliminated by ver-
tical sliding of piece 1; (c) Gap between pieces 1 and 2 is
eliminated by horizontal sliding of piece 2

Fig. 14 Layout which becomes more compact after
eliminating gaps
Computation time: 0.42 s; packing length: 4521.08 mm;
packing density: 66.77%

Fig. 11 Sheet and pieces
The sheet is 3050 mm wide, on which a lot of packing points
are set with the packing point distance (PPD) being 100 mm.
At each point, the piece is allowed to have eight orientations,
corresponding to rotation angles of 0°, 45°, 90°, …, 315°

No. 1
quantity: 1

No. 2
quantity: 10

No.4
quantity: 40

No. 3
quantity: 15

Direction of gravity
Sheet

Fig. 12 Gap between pieces
Packing length: 4900 mm; packing density: 61.61%

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 866

Obviously, RN and PPD are two important
variables that affect the computing speed and packing
efficiency. Thus, we made some comparisons under
different RNs and PPDs. In Table 1, the computa-
tional results are summarized. Due to space limita-
tions, we list the detailed layout results of only
PPD=25 mm (Figs. B1–B5).

Larger RNs and smaller PPDs lead to extended
execution times (Table 1 and Figs. 15b and 15d). The
lines in Fig. 15b are close to straight, which indicates
a linear relationship between the execution time and
RN. In Fig. 15d five parabolic lines describe the

quadratic relationship between the execution time and
PPD.

As to the relationship between packing density
(PD) and RN/PPD, the situation is complicated. The
first conclusion, drawn from Fig. 15c, is that a smaller
PPD leads to a larger PD, except for RN=4. But a
larger RN does not always produce a more compact
layout. PD does not always increase with increasing
RN (Fig. 15a). Three PD-RN lines reach a peak at
RN=4 and RN=16. The PD can reach a relatively high
value at a certain RN, which we call the sweet RN.
This problem has two sweet RNs.

0 4 8 12 16 20 24 28 32
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75

P
a

ck
in

g
 d

e
n

si
ty

Rotation number

 PPD=100 mm
 PPD=50 mm
 PPD=25 mm

(a)

0 5 10 15 20 25 30 35
0
1
2
3
4
5
6
7
8
9

10
11

T
im

e
(k

s)

Rotation number

 PPD=100 mm
 PPD=50 mm
 PPD=25 mm

(b)

20 30 40 50 60 70 80 90 100 110
0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

P
ac

ki
ng

 d
en

si
ty

PPD

 RN=2
 RN=4
 RN=8
 RN=16
 RN=32

(c)

20 30 40 50 60 70 80 90 100 110
0

2

4

6

8

10

T
im

e
 (

ks
)

PPD

 RN=2
 RN=4
 RN=8
 RN=16
 RN=32

(d)

Fig. 15 Packing density and execution time with different rotation numbers of piece (RNs) and packing point dis-
tances (PPDs)
(a) Packing density vs. RN; (b) Execution time vs. RN; (c) Packing density vs. PPD; (d) Execution time vs. PPD

Table 1 Packing density and execution time with different RNs and PPDs

Packing length (mm) Packing density (%) Execution time (s)
RN

PPD=100 mm 50 mm 25 mm 100 mm 50 mm 25 mm 100 mm 50 mm 25 mm

2 4681.39 4391.34 4218.28 64.48 68.74 71.56 114 272 799

4 4397.47 4159.01 4167.96 68.65 72.58 72.43 167 422 1327

8 4391.95 4274.98 4166.79 68.73 70.61 72.45 240 741 2607

16 4361.64 4193.77 4068.06 69.21 71.98 74.20 458 1427 5136

32 4400.55 4221.47 4144.43 68.60 71.51 72.84 866 2724 10 278

RN: rotation number of piece; PPD: packing point distance

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 867

3.2 Experiment 2

To assess the performance of HAPE, we gath-
ered 11 well-known problems from the literature,
which were downloaded from the EURO Special
Interest Group on Cutting and Packing (ESICUP)
website http://paginas.fe.up.pt/~esicup/tiki-index.php
(Table 2).

Once this website was open to the public, re-
searchers around the world competed to test their
algorithms with these standard problems. The re-
ported packing lengths are becoming shorter and
shorter (Table 3). Taking Blaz1 for example, there are
four different length records from the years 2000 to
2006. The longest record (Lmax=28.9) was created by
Oliveira et al. (2000) while the shortest (Lmin=25.84)
was from Gomes and Oliveira (2006).

As in Experiment 1, each problem in Table 2 was

run for 500 iterations (HC+HAPE). The packing
lengths and execution times are summarized in Table
3 (for details see Appendix B, Figs. B6–B16).

The first observation about HAPE is its high
speed which allows a fairly wide search of the solu-
tion space. Referring to the last column in Table 3, the
shortest execution time for HAPE was 18/500=0.04 s
and the longest was 1078/500=2.16 s.

The second observation is the good performance
of HAPE in combination with HC. Although the pro-
posed approach does not surpass any of the newly
created records, the solutions are located within the
reasonable range (except for SHAPES0/SHAPES1).
Take problem Blaz1 for example, Lhh=28.34[Lmin=
25.84, Lmax=28.90]. This can be seen more clearly by
defining the relative length, Li/Lhh (Li=Lmin, Lmax, or
Lhh) (Fig. 16).

Table 2 The 11 benchmark problems from the literature

Reference Problem name Piece quantity Sheet width Rotation number

Błażewicz et al. (1993) Blaz1 28 15 2

Ratanapan and Dagli (1997) Dagli 30 60 4

Fujita et al. (1993) Fu 12 38 4

Jakobs (1996) Jakobs1 25 40 4

Jakobs (1996) Jakobs2 25 70 4

Marques et al. (1991) Marques 24 104 4

Oliveira et al. (2000) SHAPES0 43 40 1

Oliveira et al. (2000) SHAPES1 43 40 2

Oliveira et al. (2000) SHIRTS 99 40 2

Oliveira et al. (2000) SWIM 48 5752 2

Oliveira et al. (2000) TROUSERS 64 79 2

Table 3 Published length records and our results

Problem
Length

1
Reference

Length
2

Reference
Length

3
Reference

Length
4

Reference Lmin Lmax Lhh
 Execution

time (s)

Blaz1 27.30 a 27.20 e 25.84 f 28.90 g 25.84 28.90 28.34 18

Dagli 65.60 b 60.57 e 58.20 f − − 58.20 65.60 60.75 219

Fu 34.00 c 32.80 e 31.33 f − − 31.33 34.00 33.00 38

Jakobs1 13.20 b 11.86 e 12.00 f − − 11.86 13.20 13.00 59

Jakobs2 28.20 b 25.80 e 24.97 f − − 24.97 28.20 26.77 183

Marques 83.60 b 80.00 e 78.48 f − − 78.48 83.60 82.30 369

SHAPES0 63.00 d 65.00 e 60.00 f 66.75 g 60.00 66.75 67.55 79

SHAPES1 59.00 a 58.40 e 56.00 f 61.00 g 56.00 61.00 64.04 159

SHIRTS 63.13 a 63.00 e 62.21 f 66.44 g 62.21 66.44 65.97 217

SWIM 6568.00 b 6462.40 e 5948.37 f − − 5948.37 6568.00 6525.24 805

TROUSERS 245.75 a 243.40 e 242.11 f 263.20 g 242.11 263.17 251.47 1078

Lhh: packing length generated by HAPE+HC. a: Gomes and Oliveira (2002); b: Hopper (2000); c: Fujita et al. (1993); d: Dowsland and
Dowsland (1993); e: Burke et al. (2006); f: Gomes and Oliveira (2006); g: Oliveira et al. (2000)

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 868

Table 3 and Fig. 16 show that our method works

poorly on SHAPES0/SHAPES1. To improve the
packing density, we assigned three larger values to
RN, from 4 to 16, and then produced the corre-
sponding layouts (Figs. 17–19). In Fig. 18, the pack-
ing length reaches the optimal value 56.66 (very close
to Lmin=56.00 in Table 3) at RN=8, which can be re-
garded as the sweet RN for problem SHAPES.

4 Summary

In this paper we have presented a new algorithm,
named HAPE, for nesting problems. This algorithm is
quite different from others, because it avoids the
time-consuming calculation of NFP by using a geo-
metric technique of an overlap test for polygons. Our
computational experiments showed that HAPE is a
credible algorithm for nesting problems. HAPE also
allows each piece to have up to 32 orientations while
the execution time is reasonable. The initial study also
demonstrated HAPE’s potential for hybridization
with other meta-heuristics.

Although the main advantage of HAPE is its
ability to rotate the pieces through many angles, it is
not suitable to assign a big value to RN without
limitation. We suggest using a sweet RN and a rea-
sonably small PPD to obtain a compact packing lay-
out in an acceptable time. But how to find the sweet
RN is still not clear. This could be an interesting re-
search question for future studies.

Acknowledgements

The authors would like to thank Guangzhou
Wenchong Shipyard Co., Ltd. (GWS) and Guangzhou
Shipyard International Co., Ltd. (GSI) for supporting
this study. We also thank the anonymous reviewers
for their constructive comments.

References
Albano, A., Sapuppo, G., 1980. Optimal allocation of two-

dimensional irregular shapes using heuristic search
methods. IEEE Transactions on Systems, Man and Cy-
bernetics, 10(5):242-248. [doi:10.1109/TSMC.1980.4308
483]

Art, J.R.C., 1966. An Approach to the Two Dimensional

Fig. 17 SHAPES2

HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=62.09;
density=64.26%; execution time=220 s

Fig. 18 SHAPES3

HC (500 iterations)+HAPE (RN=8, PPD=0.5). Length=56.66;
density=70.42%; execution time=415 s

Fig. 19 SHAPES4
HC (500 iterations)+HAPE (RN=16, PPD=0.5). Length=58.93;
density=67.71%; execution time=805 s

Blaz1 Dagli Fu

Jakobs1
Jakobs2

Marques
0.8

0.9

1.0

1.1

R
el

at
iv

e
le

ng
th

 Lmin Lmax HAPE+HC

SHAPES0
SHAPES1

SHIRTS
SWIM

TROUSERS
0.8

0.9

1.0

1.1

R
e

la
tiv

e
 le

n
g

th

Problem

Fig. 16 Relationship between Lmin, Lmax, and Lhh

Relative length=Li/Lhh, where Li=Lmin, Lmax, or Lhh

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 869

Irregular Cutting Stock Problem. Technical Report No.
36.Y08, IBM Cambridge Scientific Center, Massachu-
setts, USA.

Bennell, J.A., Dowsland, K.A., Dowsland, W.B., 2001. The
irregular cutting-stock problem—a new procedure for
deriving the no-fit polygon. Computers & Operations
Research, 28(3):271-287. [doi:10.1016/S0305-0548(00)
00021-6]

Błażewicz, J., Hawryluk, P., Walkowiak, R., 1993. Using a
tabu search approach for solving the two-dimensional ir-
regular cutting problem. Annals of Operations Research,
41(4):313-325. [doi:10.1007/BF02022998]

Burke, E., Hellier, R., Kendall, G., Whitwell, G., 2006. A new
bottom-left-fill heuristic algorithm for the two-
dimensional irregular packing problem. Operations Re-
search, 54(3):587-601. [doi:10.1287/opre.1060.0293]

Burke, E.K., Hellier, R.S.R., Kendall, G., Whitwell, G., 2007.
Complete and robust no-fit polygon generation for the
irregular stock cutting problem. European Journal of
Operational Research, 179(1):27-49. [doi:10.1016/j.ejor.
2006.03.011]

Dowsland, K.A., Dowsland, W.B., 1993. Heuristic Ap-
proaches to Irregular Cutting Problems. Technical Report,
University College of Swansea, Swansea, UK.

Dowsland, K.A., Dowsland, W.B., Bennell, J.A., 1998. Jos-
tling for position: local improvement for irregular cutting
patterns. Journal of the Operational Research Society,
49(6):647-658. [doi:10.1057/palgrave.jors.2600563]

Dowsland, K.A., Vaid, S., Dowsland, W.B., 2002. An algo-
rithm for polygon placement using a bottom-left strategy.
European Journal of Operational Research, 141(2):371-
381. [doi:10.1016/S0377-2217(02)00131-5]

Fujita, K., Akagji, S., Kirokawa, N., 1993. Hybrid Approach
for Optimal Nesting Using a Genetic Algorithm and a
Local Minimisation Algorithm. Proceedings 19th Annual
ASME Design Automation Conference, Part 1, 65:477-
484.

Gomes, A.M., Oliveira, J.F., 2002. A 2-exchange heuristic for
nesting problems. European Journal of Operational Re-
search, 141(2):359-370. [doi:10.1016/S0377-2217(02)00
130-3]

Gomes, A.M., Oliveira, J.F., 2006. Solving irregular strip
packing problems by hybridising simulated annealing and
linear programming. European Journal of Operational
Research, 171(3):811-829. [doi:10.1016/j.ejor.2004.09.
008]

Hibbeler, R.C., 2011. Statics and Mechanics of Materials.
Prentice Hall, New Jersey, USA, p.261-272.

Hopper, E., 2000. Two-Dimensional Packing Utilising Evolu-
tionary Algorithm and Other Meta-Heuristic Methods.
PhD Thesis, University of Wales, Cardiff, UK.

Jakobs, S., 1996. On genetic algorithms for the packing of
polygons. European Journal of Operational Research,
88(1):165-181. [doi:10.1016/0377-2217(94)00166-9]

Marques, V.M.M., Bispo, C.F.G., Sentieiro, J.J.S., 1991. A
System for the Compaction of Two-Dimensional Irregular
Shapes Based on Simulated Annealing. Proceedings In-

ternational Conference on Industrial Electronics, Control
and Instrumentation, p.1911-1916. [doi:10.1109/IECON.
1991.239050]

Oliveira, J.F., Gomes, A.M., Ferreira, J.S., 2000. TOPOS—a
new constructive algorithm for nesting problems. OR
Spectrum, 22(2):263-284. [doi:10.1007/s002910050105]

Ratanapan, K., Dagli, C.H., 1997. An Object-Based Evolu-
tionary Algorithm for Solving Irregular Nesting Problems.
Proceedings Artificial Neural Networks in Engineering
Conference, p.383-388.

Sun, J., Yang, C., 1995. Computer Graphics. Tsinghua Uni-
versity Press, Beijing, China, p.390-391 (in Chinese).

Appendix A: Data set of problem SomeParts
from shipbuilding industry

Plate length=5000
Plate width=3050
Part
Name
Part1
Quantity
1
OutLoop
93.589,1651.729 93.589,1050.924
209.909,962.031 354.716,877.905
477.743,798.551 598.471,726.769
732.067,972.383 749.897,991.143
774.718,998.476 799.880,992.415
844.681,968.046 853.856,961.629
861.373,953.331 866.855,943.568
870.027,932.830 870.730,921.656
868.929,910.605 864.714,900.232
842.916,596.559 979.581,532.350
1118.216,472.471 1235.201,425.637
1326.210,669.060 1341.240,690.130
1364.791,700.864 1390.554,698.383
1436.451,681.223 1446.433,676.153
1455.037,668.988 1461.831,660.088
1466.474,649.900 1468.734,638.934
1468.497,627.740 1465.775,616.880
1374.585,372.976 1518.983,321.731
1714.168,259.200 1912.952,202.611
1977.557,454.205 1990.263,476.753
2012.541,489.928 2038.422,490.198
2085.882,478.011 2096.346,474.030
2105.663,467.819 2113.364,459.692
2119.063,450.054 2122.475,439.390
2123.428,428.234 2121.875,417.146
2057.134,165.022 2238.542,121.724
2445.524,78.184 2653.588,40.141
2707.589,31.157 2707.589,616.729
2567.589,616.729 2549.911,624.052
2542.589,641.729 2542.589,669.729
2549.911,687.407 2567.589,694.729

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 870

2707.589,694.729 2707.589,1365.729
2567.589,1365.729 2549.911,1373.052
2542.589,1390.729 2542.589,1418.729
2549.911,1436.407 2567.589,1443.729
2707.589,1443.729 2707.589,2139.729
1889.589,2139.729 1889.589,1879.729
1882.890,1854.729 1864.589,1836.428
1839.589,1829.729 1790.589,1829.729
1765.589,1836.428 1747.287,1854.729
1740.589,1879.729 1740.589,2139.729
1021.589,2139.729 1021.589,1859.729
1014.890,1834.729 996.589,1816.428
971.589,1809.729 920.589,1809.729
895.589,1816.428 877.287,1834.729
870.589,1859.729 870.589,2139.729
93.589,2139.729 EndOutLoop
InnerLoop
1709.245,837.960 1909.245,891.550
2055.655,1037.960 2109.245,1237.960
2055.655,1437.960 1909.245,1584.371
1709.245,1637.960 1309.245,1637.960
1109.245,1584.371 962.835,1437.960
909.245,1237.960 962.835,1037.960
1109.245,891.550 1309.245,837.960
EndInnerLoop
EndPart
Part
Name
Part2
Quantity
10
OutLoop
215.943,595.621 286.602,30.347
356.602,30.347 492.443,321.659
540.235,403.064 602.476,474.036
676.947,532.044 760.993,575.022
851.619,601.437 945.595,610.347
955.595,610.347 955.595,630.347
246.602,630.347 245.590,621.991
242.612,614.119 237.840,607.184
231.552,601.590 224.109,597.658
EndOutLoop
EndPart
Part
Name
Part3
Quantity
15
OutLoop
58.095,402.023 56.902,392.965
53.406,384.523 47.843,377.274
40.595,371.712 32.153,368.216
23.095,367.023 23.095,37.023
47.843,26.772 58.095,2.023
298.095,2.023 304.390,68.642
328.131,131.204 367.617,185.228

420.018,226.843 481.581,253.068
547.895,262.023 633.095,262.023
633.095,367.023 608.346,377.274
598.095,402.023
EndOutLoop
InnerLoop
286.799,275.478 261.419,281.271
241.066,265.040 241.066,239.007
261.419,222.775 286.799,228.568
298.095,252.023 EndInnerLoop
EndPart
Part
Name
Part4
Quantity
40
OutLoop
135.869,21.829 155.869,21.829
170.844,105.429 205.515,182.960
257.840,249.858 324.738,302.183
402.269,336.853 485.869,351.829
485.869,371.829 170.869,371.829
160.617,347.080 135.869,336.829
EndOutLoop
EndPart
#FileEnd

Appendix B: Layouts with different RNs and
PPDs

Fig. B1 SomeParts (RN=2, PPD=25)
HC (500 iterations)+HAPE. Length=4218.28; density=71.56%;
execution time=799 s

Fig. B2 SomeParts (RN=4, PPD=25)
HC (500 iterations)+HAPE. Length=4167.96; density=72.43%;
execution time=1327 s

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 871

 Fig. B3 SomeParts (RN=8, PPD=25)
HC (500 iterations)+HAPE. Length=4166.79; density=72.45%;
execution time=2607 s

Fig. B4 SomeParts (RN=16, PPD=25)
HC (500 iterations)+HAPE. Length=4068.06; density=74.20%;
execution time=5136 s

Fig. B5 SomeParts (RN=32, PPD=25)
HC (500 iterations)+HAPE. Length=4144.43; density=72.84%;
execution time=10 278 s

Fig. B6 Blaz1
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length= 28.34;
density=76.21%; execution time=18 s

Fig. B7 Dagli
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=60.75;
density=83.48%; execution time=219 s

Fig. B8 Fu
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=33.00;
density=86.36%; execution time=38 s

Fig. B10 Jakobs2
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=26.77;
density=72.11%; execution time=183 s

Fig. B11 Marques
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=
82.30; density=84.05%; execution time=369 s

Fig. B12 SHAPES0

HC (500 iterations)+HAPE (RN=1, PPD=0.5). Length=67.55;
density=59.06%; execution time=79 s

Fig. B9 Jakobs1
HC (500 iterations)+HAPE (RN=4, PPD=0.5). Length=13.00;
density=75.38%; execution time=59 s

Liu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2011 12(11):860-872 872

Fig. B13 SHAPES1
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length=64.04;
density=62.31%; execution time=159 s

Fig. B14 SHIRTS
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length=65.97;
density=81.86%; execution time=217 s

Fig. B15 SWIM
HC (500 iterations)+HAPE (RN=2, PPD=50). Length=
6525.24; density=67.79%; execution time=805 s

Fig. B16 TROUSERS
HC (500 iterations)+HAPE (RN=2, PPD=0.5). Length=251.47;
density=86.61%; execution time=1078 s

